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1. Introduction

Non-linear σ-models in two dimensions with an N = (2, 2) supersymmetry, [1]–[4], play a

central role in the description of type II superstrings in the absence of R-R fluxes. The

interest in these models was recently rekindled as well in the physics as in the mathemat-

ics community. For physicists, these models allow for the study of compactifications in

the presence of non-trivial NS-NS fluxes, while for mathematicians the models provide a

concrete realization of generalized complex geometries. A full off-shell supersymmetric de-

scription clarifies the geometry behind these models. The case without boundaries has been

studied for more than two decennia and has recently been fully solved in [5] (building on

results in e.g. [6]–[9]). Formulating the model in N = (2, 2) superspace allows one to encode

the whole (local) geometry in a single scalar function, the Lagrange density. The Lagrange
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density is a function of scalar superfields satisfying certain constraints. Only three types

of superfields are needed [5, 10]: chiral, twisted chiral and semi-chiral superfields.

However, when dealing with D-branes one needs to confront N = (2, 2) non-linear σ-

models with boundaries. The presence of boundaries breaks the N = (2, 2) supersymmetry

down to an N = 2 supersymmetry. While a lot of attention has been paid to these

models [11]–[17], their full description in N = 2 superspace has not been given yet.

In the present paper we open this study with the simplest case: A and B branes on

Kähler manifolds. While it is not too hard to formulate B branes in N = 2 superspace [18],

type A branes remained enigmatic up till now. As their boundary conditions appear at

first sight to be incompatible with the complex structure associated with the N = (2, 2)

bulk supersymmetry, one expects a superspace formulation to be subtle.

An important additional motivation for finding an N = 2 world-sheet superspace de-

scription of A branes is that it provides a new concrete setting for studying coisotropic

branes. Indeed, in [19] it was realized that in addition to the usual type A branes wrap-

ping lagrangian cycles, for consistency with mirror symmetry which exchanges A and B

branes, one should also include so-called coisotropic branes. Their properties were already

established in [19] and later re-derived from a world-sheet point of view in [17]. So far,

the only concrete examples appearing in the literature are maximally coisotropic branes

on T 4 [19, 20] and K3 [21], and coisotropic branes wrapping 5-cycles on T 6, T 6/Z2 × Z2

and T 2 × K3 [22].

In the next section we revisit the N = (1, 1) supersymmetric non-linear σ-models in

the presence of boundaries thereby clarifying some remaining problems. In section 3 we

construct N = 2 superspace. We show that changing from A to B boundary conditions

amounts to interchanging chiral superfields and twisted chiral ones and vice versa. In

section 4 we give a detailed description of type A branes followed by a similar description

of type B branes in section 5. When certain isometries are present, chiral superfields can

be dualized into twisted chiral superfields and vice versa. In section 6 we study these

duality transformations in the presence of boundaries. We end with conclusions and an

outlook. The study of general non-linear σ-models with boundaries — involving chiral,

twisted chiral and semi-chiral fields simultanously — will appear elsewhere [23].

2. From N = (1, 1) to N = 1

A non-linear σ-model (with N ≤ (1, 1)) on some target manifold M is characterized by a

metric gab and a closed 3-form Tabc (known as the torsion, the Kalb-Ramond 3-form or the

NS-NS flux) on M. The action in N = (1, 1) superspace is simply,1

S = 2

∫

d2σ d2θ D+XaD−Xb (gab + bab) , (2.1)

where we used the locally defined 2-form potential bab for the torsion,

Tabc = −3

2
∂[abbc]. (2.2)

1Our conventions are given in appendix A.
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We introduce a boundary2 at σ = 0 ( σ ≥ 0 ) and θ+ = θ−. This breaks the invariance

under translations in both the σ and the θ′ ≡ θ+ − θ− direction. Put differently, the

presence of a boundary breaks the N = (1, 1) supersymmetry to an N = 1 supersymmetry.

We introduce the derivatives,

D ≡ D+ + D−, D′ ≡ D+ − D−, (2.3)

which satisfy,

D2 = D′2 = − i

2
∂τ , {D,D′} = −i ∂σ. (2.4)

Using this, one verifies that

−D D′ = 2D+ D− +
i

2
∂σ, (2.5)

which allows us to write a manifest N = 1 supersymmetric lagrangian,

S = −
∫

d2σ dθ D′
(

D+XaD−Xb (gab + bab)
)

, (2.6)

which — because of eq. (2.5) — differs from the action in the absence of boundaries,

eq. (2.1), by a boundary term [25, 18]. Working out the D′ derivative yields the action in

N = 1 boundary superspace obtained in [18],

S =

∫

d2σ dθ
(

i gab DXa∂τX
b − 2i gab ∂σXaD′Xb + 2i bab ∂σXaDXb

−2 gab D′Xa∇D′Xb + 2Tabc D′XaDXbDXc − 2

3
Tabc D′XaD′XbD′Xc

)

, (2.7)

where,

∇D′Xa ≡ DD′Xa + { a
bc}DXbD′Xc, (2.8)

and both Xa and D′Xa should now be viewed as independent N = 1 superfields. Note

that when bab = ∂aAb − ∂bAa, we can rewrite eq. (2.7) as,

S =

∫

d2σ dθ
(

i gab DXa∂τX
b − 2i gab ∂σXaD′Xb − 2 gab D′Xa∇D′Xb

)

+ 2i

∫

dτdθ Aa DXa. (2.9)

Varying the action eq. (2.6)3 or eq. (2.7) yields a boundary term,

δS
∣

∣

boundary
= −2i

∫

dτdθ δXa
(

gab D′Xb − bab DXb
)

. (2.10)

2As far as we know, the first place where superspaces with boundaries were introduced and used was

in [24].
3Where one uses that

R

d2σdθD′ D± = −(i/2)
R

dτdθ.
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This boundary term will only vanish if suitable boundary conditions are imposed. In order

to do so we introduce a (1,1) tensor R(X)ab [11, 15, 16, 18] which satisfies,

Ra
c Rc

b = δa
b , (2.11)

and projection operators P±,

Pa
±b ≡

1

2
(δa

b ± Ra
b) . (2.12)

With this we impose Dirichlet boundary conditions,

Pa
−b δXb = 0. (2.13)

Using eq. (2.13), one verifies that the boundary term eq. (2.10) vanishes, provided one

imposes Neumann boundary conditions,

P+ba D′Xb = Pb
+a bbc DXc, (2.14)

as well. If in addition we assume — for which at this point, as we will demonstrate in an

example later on, there is no necessary reason — that,

gacR
c
b = gbcR

c
a, (2.15)

or Rab = Rba, then we can rewrite eq. (2.14) as,

Pa
+b D′Xb = Pa

+c bc
dPd

+b DXb. (2.16)

Invariance of the Dirichlet boundary conditions under what remains of the super-Poincaré

transformations implies that on the boundary,

Pa
−b DXb = Pa

−b ∂τXb = 0, (2.17)

hold as well. Using D2 = −i/2 ∂τ , we get from eq. (2.17) the integrability conditions,4

0 = Pd
+[bPe

+c]Pa
+d,e = − 1

2
Pa
−e N e

bc[R,R]. (2.18)

These conditions guarantee the existence of adapted coordinates X â, â ∈ {p + 1, · · · , d},
with p ≤ d the rank of P+ such that the Dirichlet boundary conditions, eq. (2.13) are

simply given by,

X â = constant, ∀ â ∈ {p + 1, · · · , d}. (2.19)

Writing the remainder of the coordinates as X ǎ, ǎ ∈ {1, · · · , p}, we get the Neumann

boundary conditions, eq. (2.14), in our adapted coordinates,

gǎb D′Xb = bǎb̌ DX b̌, (2.20)

4Out of two (1, 1) tensors Ra
b and Sa

b, one constructs a (1, 2) tensor N [R, S]abc, the Nijenhuis tensor,

as N [R, S]abc = Ra
dSd

[b,c] + Rd
[bS

a
c],d + R ↔ S.
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where b is summed from 1 to d and where we used that DX b̂ vanishes on the bound-

ary. Concluding, the action eq. (2.6) together with the boundary conditions eqs. (2.19)

and (2.20), describe open strings in the presence of a Dp-brane whose position is deter-

mined by eq. (2.19).

Let us end this section with an example. We start with a very simple configuration

consisting of a D2-brane on a 2-torus with coordinates X1 and X2 in the presence of a

U(1) magnetic background5 F12 = F (X1) (note that ∂2F = 0). The action is,

SD2 = −
∫

d2σdθD′
(

D+X1D−X1 + D+X2D−X2 +

F (X1)
(

D+X1D−X2 − D+X2D−X1
)

)

, (2.21)

and the boundary conditions are Neumann in all directions,

D′X1 = + F (X1)DX2, D′X2 = −F (X1)DX1. (2.22)

Making a T-duality transformation along the X2 direction6 yields a D1-brane with action,

SD1 = −
∫

d2σdθD′
(

(1 + F 2)D+X1D−X1 + D+X2D−X2

+F
(

D+X1D−X2 + D+X2D−X1
)

)

, (2.23)

and boundary conditions,

δX2 = 0,

(1 + F 2)D′X1 + F D′X2 = 0. (2.24)

Comparing eq. (2.23) to eq. (2.6), we read off the (flat) metric: g11 = 1 + F 2, g12 = F and

g22 = 1. Comparing the boundary conditions eq. (2.24) with eqs. (2.13) and (2.14), we get

R1
1 = 1, R1

2 = 2F/(1 + F 2), R2
1 = 0 and R2

2 = −1. One verifies that for this choice

of Ra
b, Rab = Rba holds. Note that we might as well have chosen R1

1 = −R2
2 = 1 and

R1
2 = R2

1 = 0 which also reproduce the boundary conditions eq. (2.24). However for this

choice we have Rab 6= Rba.

The D1-brane configuration described here is fairly standard. Indeed, take the Dirichlet

boundary condition to be X2 = 0 and change coordinates,

Y 1 = X1, Y 2 = X2 + A(X1), (2.25)

where the potential A(X1) is defined by F (X1) = ∂1A(X1). In these coordinates the

metric becomes the standard one, gab = δab, and the D1-brane is defined by Y 2 = A(Y 1),

where Y 1 assumes the role of worldvolume coordinate. Taking a constant magnetic field,

F = tan θ, we recognize the system as a straight D1-brane rotated in the Y 1Y 2-plane over

an angle θ with respect to the Y 1-axis.

5Whenever bab is closed, we will denote it by Fab.
6A simple way to do this is by gauging the isometry X2 → X2 + constant and — using Lagrange

multipliers — imposing that the gauge fields are pure gauge. Integrating over the gauge fields yields the

T-dual model, see e.g. [26].
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3. N=2 superspace

3.1 N = (2, 2) supersymmetry in the absence of boundaries

Even without boundaries, promoting the N = (1, 1) supersymmetry of the action in

eq. (2.1) to an N = (2, 2) is a non-trivial operation which introduces a lot of additional

geometric structure in the model. The most general extra supersymmetry transformations

— consistent with dimensions and Poincaré symmetry — are of the form,

δXa = ε+ Ja
+b(X)D+Xb + ε− Ja

−b(X)D−Xb, (3.1)

which requires the introduction of two (1,1) tensors J+ and J−. Requiring the supersym-

metry algebra to close on-shell, one finds that both J+ and J− must be complex structures,

Ja
±c Jc

±b = −δa
b ,

N [J±, J±]abc = 0. (3.2)

Apart from requiring that the N = (2, 2) supersymmetry algebra is satisfied, we have to

demand that the action eq. (2.1) is invariant under the transformations eq. (3.1). This

yields additional conditions. The metric has to be hermitian with respect to both complex

structures,7

Jc
±a Jd

±b gcd = gab . (3.3)

Furthermore, both complex structures have to be covariantly constant,

0 = ∇±
c Ja

±b ≡ ∂c Ja
±b + Γa

±dcJ
d
±b − Γd

±bcJ
a
±d , (3.4)

with the connections Γ± given by,

Γa
±bc ≡ { a

bc} ± T a
bc . (3.5)

A complex manifold with the above additional properties is called bihermitian. When the

torsion vanishes, this type of geometry reduces to the usual Kähler geometry.

When calculating the algebra explicitly one finds that the terms in the algebra which

do not close off-shell are proportional to the commutator of the complex structures

[J+, J−]. In order to obtain an off-shell closing formulation of the model, one expects

that ker [J+, J−] can be described without any additional auxiliary fields while the descrip-

tion of coker[J+, J−] will require the introduction of new auxiliary fields. This picture was

already suggested in [8] and [9] (see also [7]) and was shown in [5] to be correct. Roughly

speaking one gets that when writing ker [J+, J−] = ker(J+−J−)⊕ker(J++J−), ker(J+−J−)

and ker(J+ + J−) resp. can be integrated to chiral and twisted chiral multiplets resp. [2].

Semi-chiral multiplets [6] are required for the description of coker[J+, J−].

7This implies the existence of two two-forms ω±
ab = −ω±

ba = gacJ
c
±b. In general they are not closed.

Using eq. (3.4), one shows that ω±
[ab,c] = ∓2Jd

±[aTbc]d = ∓(2/3)Jd
±aJe

±bJ
f
±cTdef , where for the last step we

used the fact that the Nijenhuis tensors vanish.
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In the present paper we will focus on chiral and twisted chiral multiplets, i.e. we assume

that J+ and J− commute.8 These fields in N = (2, 2) superspace (once more we refer to

the appendix for conventions) satisfy the constraints D̂±Xa = Ja
±b D±Xb where J+ and

J− can be simultaneously diagonalized. When the eigenvalues of J+ and J− have the same

(the opposite) sign we have chiral (twisted chiral) superfields. Explicitly, we get that chiral

superfields Xα, α ∈ {1, · · · ,m}, satisfy,

D̂±Xα = +iD±Xα, D̂±Xᾱ = −iD±Xᾱ. (3.6)

Twisted chiral superfields Xµ, µ ∈ {1, · · · , n} satisfy,

D̂±Xµ = ±iD±Xµ, D̂±X µ̄ = ∓iD±X µ̄. (3.7)

The most general action involving these superfields is given by,

S =

∫

d2σ d2θ d2θ̂ V (X, X̄), (3.8)

where the Lagrange density V (X, X̄) is an arbitrary real function of the chiral and twisted

chiral superfields. Passing to N = (1, 1) superspace and comparing the result to eq. (2.1),

allows one to identify the metric and the torsion potential,9

gαβ̄ = +Vαβ̄, gµν̄ = −Vµν̄ ,

bαν̄ = −Vαν̄ , bµβ̄ = +Vµβ̄, (3.9)

where all other components of g and b vanish. When writing Vαβ̄, we mean ∂α∂β̄V etc. Note

that when only one type of superfield is present, the target manifold is Kähler, which is the

case in which we are presently interested. The case where both of them are simultaneously

present will be discussed elsewhere [23].

3.2 From N = (2, 2) to N = 2

We now assume that in the bulk — far away from the boundary — the model exhibits

an N = (2, 2) supersymmetry as described in the previous subsection. We expect the

boundary to break half of the supersymmetries, so we will go from N = (2, 2) to N = 2.

In order to handle this we rewrite eq. (3.1) as,

δXa = ε J (+)a
b DXb + ε J (−)a

b D′Xb + ε′ J (−)a
b DXb + ε′ J (+)a

b D′Xb, (3.10)

where,

ε ≡ 1

2
(ε+ + ε−), ε′ ≡ 1

2
(ε+ − ε−),

J (±) ≡ 1

2
(J+ ± J−) . (3.11)

8As already mentioned in the introduction we relegate the study of the most general case — which

includes the semi-chiral superfields — to a forthcoming paper [23].
9Indices from the beginning of the Greek alphabet, α, β, γ, . . . denote chiral fields while indices from

the middle of the alphabet, µ, ν, ρ, . . . denote twisted chiral fields.
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Whenever the ε supersymmetry is preserved, one talks about B-type boundary conditions,

while preservation of the ε′ supersymmetry corresponds to what are called A-type boundary

conditions. One sees that switching from B-type to A-type amounts to replacing ε by ε′ and

J (±) by J (∓). In N = (2, 2) superspace, B-boundary conditions correspond to a boundary

θ′ ≡ (θ+ − θ−)/2 = 0 and θ̂′ ≡ (θ̂+ − θ̂−)/2 = 0. A-type boundary conditions on the other

hand correspond to θ′ ≡ (θ+−θ−)/2 = 0 and θ̂′ ≡ (θ̂+ + θ̂−)/2 = 0. For B-type boundaries

we define,

D ≡ D+ + D−, D̂ ≡ D̂+ + D̂−,

D′ ≡ D+ − D−, D̂′ ≡ D̂+ − D̂−, (3.12)

where unaccented derivatives refer to translations in the invariant directions. When dealing

with A-type boundaries, the role of D̂ and D̂′ are interchanged. For the moment we

will focus on B-type boundaries. Later on we will see that this does not present any

restriction as switching from one type of boundary conditions to another will just amount

to interchanging chiral for twisted chiral superfields and vice-versa. The derivatives defined

in eq. (3.12) satisfy,

D2 = D̂2 = D′2 = D̂′2 = − i

2
∂τ ,

{D,D′} = {D̂, D̂′} = −i∂σ , (3.13)

and all other anti-commutators vanish.

Let us now turn to the superfields. In the bulk we had chiral, twisted chiral and semi-

chiral superfields. In the present paper we focus on chiral and twisted chiral superfields.

From eqs. (3.6) and (3.12) we get for the chiral fields,

D̂Xα = +iDXα, D̂Xᾱ = −iDXᾱ

D̂′Xα = +iD′Xα, D̂′Xᾱ = −iD′Xᾱ, (3.14)

where α, ᾱ ∈ {1, · · · ,m}. Passing from N = (2, 2) — parametrized by the Grassmann

coordinates θ, θ̂, θ′ and θ̂′ — to N = 2 superspace – parametrized by θ and θ̂ — we get

Xα, Xᾱ, D′Xα and D′Xᾱ as N = 2 superfields and they satisfy the constraints,

D̂Xα = +iDXα, D̂Xᾱ = −iDXᾱ,

D̂ D′Xα = +iD D′Xα − ∂σXα, D̂ D′Xᾱ = −iD D′Xᾱ + ∂σXᾱ. (3.15)

For twisted chiral superfields we get instead, when combining eqs. (3.7) and (3.12),

D̂Xµ = +iD′Xµ, D̂X µ̄ = −iD′X µ̄,

D̂′Xµ = +iDXµ, D̂′X µ̄ = −iDX µ̄, (3.16)

with µ, µ̄ ∈ {1, · · · , n}. Passing again from N = (2, 2) to N = 2 superspace, we now get

Xµ, X µ̄, D′Xµ and D′X µ̄ as N = 2 superfields satisfying the constraints,

D̂Xµ = +iD′Xµ, D̂X µ̄ = −iD′X µ̄,

D̂ D′Xµ = −1

2
Ẋµ, D̂ D′X µ̄ = +

1

2
Ẋ µ̄. (3.17)

– 8 –
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So in N = 2 superspace, the twisted chiral superfields Xµ and X µ̄ are unconstrained

superfields.

It is important to note that, had we used A-type boundaries instead of B-type, we

would have gotten exactly the same expressions but with the roles of chiral and twisted

chiral fields interchanged. We will return to duality transformations interchanging chiral

for twisted chiral fields and vice versa in section 6.

Once more one immediately verifies that the difference between the fermionic measure

D+D−D̂+D̂− and DD̂D′D̂′ is just a boundary term. So the (al)most general N = 2

invariant action which reduces to the usual action far away from the boundary we can

write down is,

S =

∫

d2σ dθdθ̂ D′D̂′ V (X, X̄), (3.18)

where V (X, X̄) is an arbitrary function of the (bulk) superfields. In fact, when boundaries

are present, we can still generalize the previous by adding a boundary term,

S =

∫

d2σ dθdθ̂ D′D̂′ V (X, X̄) + i

∫

dτ dθdθ̂ W (X, X̄), (3.19)

with W (X, X̄) an arbitrary function of the (bulk) superfields.

4. Type A branes

Type A branes on Kähler manifolds are described in terms of twisted chiral fields, eqs. (3.16)

and (3.17). The most general N = 2 supersymmetric action we can write down is,

S =

∫

d2σd2θD′D̂′ V (X, X̄) + i

∫

dτd2θ W (X, X̄). (4.1)

with V (X, X̄) and W (X, X̄) arbitrary functions of the twisted chiral fields. Working out the

D̂′ and D′ derivatives using the constraints eq. (3.16) gives the action in N = 2 boundary

superspace,

S =

∫

d2σd2θ
(

2iVµ̄ν D′X µ̄DXν − 2iVµν̄ D′XµDX ν̄ + Vµ ∂σXµ − Vµ̄ ∂σX µ̄
)

+i

∫

dτd2θ W. (4.2)

It is quite interesting to note that even here — contrary to what is sometimes claimed —

the theory remains invariant under Kähler transformations. Indeed, one readily verifies

that,

V (X, X̄) → V ′(X, X̄) = V (X, X̄) + f(X) + f̄(X̄),

W (X, X̄) → W ′(X, X̄) = W (X, X̄) + i
(

f(X) − f̄(X̄)
)

, (4.3)

leaves the action eq. (4.2) invariant. Performing the integral over θ̂ in eq. (4.2) yields

eq. (2.7) with vanishing torsion, T = 0, and a Kähler metric given by gµν̄ = Vµν̄ . However,

– 9 –
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we find that eq. (2.7) comes with an extra, non-standard boundary term of the form,10

Sextra = i

∫

dτdθ
(

(V + iW )µ D′Xµ + (V − iW )µ̄ D′X µ̄
)

. (4.4)

Varying the action in eq. (4.2),11 yields besides the standard bulk equations of motion a

boundary contribution given by,

δS
∣

∣

∣

boundary
=

∫

dτd2θ
(

(V + iW )µ δXµ − (V − iW )µ̄ δX µ̄
)

. (4.5)

Both eqs. (4.4) and (4.5) indicate that the choice of boundary conditions will be subtle

here.

In order to get a feeling of what is going on, we first look at the simplest situation

where there is only a single twisted chiral field (which we call w), i.e. n = 1. The model is

characterized by two potentials V (w, w̄) and W (w, w̄). We get that the boundary term in

the variation of the action, eq. (4.5), vanishes provided we impose the Dirichlet boundary

condition,

δw = Rw
w̄ δw̄, (4.6)

with,

Rw
w̄ ≡ Vw̄ − iWw̄

Vw + iWw
. (4.7)

Eq. (4.6) implies,

D̂w = Rw
w̄ D̂w̄, (4.8)

which using the constraints eq. (3.17) reduces to the Neumann boundary condition,

D′w + Rw
w̄ D′w̄ = 0. (4.9)

So the σ-model describes open strings propagating on a Kähler manifold with Kähler

potential V in the presence of a D1-brane wrapped on a lagrangian submanifold (a trivial

notion in two dimensions) whose position is determined by eq. (4.6). In order to make

contact with the example discussed at the end of section 2, we restrict ourselves to flat

space, i.e. V = (w + w̄)2/2, and assume that W has the form W = W (w + w̄). Using the

coordinates defined in eq. (2.25), we identify w = (Y 1 + i Y 2)/
√

2 and we find,

W = −(w + w̄)Q′(w + w̄) + Q(w + w̄), (4.10)

where a prime denotes a derivative with respect to either w or w̄ and Q(w + w̄) is a

“prepotential” for F which appears in eqs. (2.23) and (2.24),

F = ∂w∂w̄ Q(w + w̄). (4.11)

10This unusual boundary term was already noticed in [18]. In order to recover the standard boundary

term — as in eq. (2.9), we will need non-trivial Neumann boundary conditions eq. (2.14).
11When varying we use the fact that the N = 2 superfields Xµ and Xµ̄ are unconstraind, while δD′Xµ =

−iD̂δXµ and similarly for δD′Xµ̄.
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We get here,

Rw
w̄ =

1 + iQ′′

1 − iQ′′
=

1 + i F

1 − i F
, (4.12)

and this corresponds to the first choice (i.e. the one for which Rab = Rba holds) for Ra
b

made in section 2. Using this we obtain the boundary conditions,

−i(w − w̄) − Q′(w + w̄) = constant, (4.13)

and,

D′w + D′w̄ = iQ′′(w + w̄)
(

D′w − D′w̄
)

. (4.14)

The resulting model is precisely the one discussed in section 2, however now in a manifest

N = 2 supersymmetric setting. The extended supersymmetry fixed the choice of Ra
b. Note

that it is the potential W which allows us to tune the precise location of the D1-brane.

We now turn to the general case. The Dirichlet boundary conditions can be written

as,

δXµ = Rµ
ν̄ δX ν̄ + Rµ

ν δXν . (4.15)

Invariance of the boundary conditions under the supersymmetry transformations implies,

D̂Xµ = Rµ
ν̄ D̂X ν̄ + Rµ

ν D̂Xν , (4.16)

which using the constraints eq. (3.16) results in,

(

P+D′X
)µ

= Rµ
ν D′Xν . (4.17)

Requiring this to be compatible with P+P+ = P+ yields,

Rµ
ρR

ρ
ν = Rµ

ν ,

Rµ
ρ̄R

ρ̄
ν̄ = 0. (4.18)

Combining this with Ra
cR

c
b = δa

b gives in addition,

Rµ
ρ̄R

ρ̄
ν = δµ

ν − Rµ
ν ,

Rµ
ρR

ρ
ν̄ = 0, (4.19)

as well. Decomposing the complexified tangent space TM as TM = T
(1,0)
M ⊕ T

(0,1)
M , we see

that eqs. (4.18) and (4.19) imply the existence of projection operators π± : T
(1,0)
M → T

(1,0)
M ,

πµ
+ν δXν ≡ Rµ

ν δXν ,

πµ
−ν δXν ≡ Rµ

ρ̄R
ρ̄
ν δXν . (4.20)

This allows us to rewrite the Dirichlet boundary conditions as,

(π−δX)µ = Rµ
ν̄ δX ν̄ . (4.21)
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For the Neumann directions we get,

(

π+P+D′X
)µ

= Rµ
νD

′Xν ,
(

π−P+D′X
)µ

= 0. (4.22)

Comparing this to eq. (2.14) we conclude that we will have a non-degenerate magnetic

background in the π+ directions while the magnetic field vanishes in the π− directions.

We first consider the case for which ker π− = ∅, i.e. the only non-vanishing components

of R are Rµ
ν̄ and Rµ̄

ν . The Dirichlet boundary conditions are simply,

δXµ = Rµ
ν̄ δX ν̄ . (4.23)

This implies the integrability conditions,

Rµ
[ν̄,ρ̄] = Rσ

[ν̄R
µ

ρ̄],σ. (4.24)

The boundary term in the variation of the action, eq. (4.5), will vanish provided,

(V + iW )µ δXµ = (V − iW )µ̄ δX µ̄, (4.25)

which implies that,

(V + iW )µ Rµ
ν̄ = (V − iW )ν̄ , (4.26)

should hold. As a consequence, we find that besides eq. (4.25), (V + iW )µ DXµ =

(V − iW )µ̄ DX µ̄ and (V + iW )µ Ẋµ = (V − iW )µ̄ Ẋ µ̄ hold as well. Using D2 = −(i/2)∂τ

we get that the previous is consistent provided,

Vµρ̄ Rρ̄
ν = Vνρ̄ Rρ̄

µ, (4.27)

holds, i.e. Rµν = Rνµ. Introducing a set of real worldvolume coordinates στ , τ ∈ {1, · · · n},
we get that eq. (4.24) guarantees that,

∂Xµ

∂στ
= Rµ

ν̄
∂X ν̄

∂στ
, (4.28)

is satisfied. With this and eq. (4.27), one finds immediately that the pullback of the Kähler

two-form to the worldvolume of the brane vanishes. This shows that, whenever ker π− = ∅,
we have a Dn-brane which wraps an isotropic submanifold of maximal dimension, i.e. a

lagrangian submanifold.12 From eq. (4.23), we get that D̂Xµ = Rµ
ν̄ D̂X ν̄ , which using the

constraints gives the Neumann boundary conditions,

D′Xµ + Rµ
ν̄ D′X ν̄ = 0, (4.29)

from which it follows that for a lagrangian D-brane the magnetic field is necessarily zero.

In other words, a lagrangian D-brane can only carry a line bundle with flat connection.

12For the definition of isotropic and lagrangian submanifolds, see appendix B.
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We now come to the case where ker π− 6= ∅. In order to proceed, we assume the

existence of adapted coordinates X µ̌ and X µ̂ (and their complex conjugates), µ̌, ν̌, · · · ∈
{1, · · · , k} and µ̂, ν̂, · · · ∈ {k + 1, · · · , n}, such that the only non-vanishing components of

π+ and π− are πµ̂
−ν̂ = δµ̂

ν̂ and πµ̌
+ν̌ = δµ̌

ν̌ . The only non-vanishing components of R are then

Rµ̂
¯̂ν(X̂, X̌) and Rµ̌

ν̌ = δµ̌
ν̌ . The Dirichlet boundary conditions become,

δX µ̂ = Rµ̂
¯̂νδX

¯̂ν . (4.30)

The resulting integrability conditions imply that Rµ̂
¯̂ν does not depend on X µ̌ or X

¯̌µ (so

Rµ̂
¯̂ν = Rµ̂

¯̂ν(X̂)) and,

Rµ̂
[¯̂ν, ¯̂ρ] = Rσ̂

[¯̂νR
µ̂

¯̂ρ],σ̂. (4.31)

A necessary — but not sufficient — condition for the vanishing of the boundary term in

eq. (4.5) is that,

(V + iW )µ̂ δX µ̂ = (V − iW ) ¯̂µ δX
¯̂µ, (4.32)

which requires that,

(V + iW )µ̂ Rµ̂
¯̂ν = (V − iW )¯̂ν , (4.33)

should hold. Eq. (4.32) also implies that,

Vµ̂ ¯̂ρR
¯̂ρ
ν̂ = Vν̂ ¯̂ρR

¯̂ρ
µ̂, (4.34)

or Rµ̂ν̂ = Rν̂µ̂. From eq. (4.30) and the bulk constraints eq. (3.16) we obtain part of the

Neumann boundary conditions,

D′ X µ̂ + Rµ̂
¯̂νD

′ X
¯̂ν = 0. (4.35)

With this the boundary term in the variation of the action, eq. (4.5) does not vanish

yet. Denoting the coordinates X µ̌ and X
¯̌µ collectively by X ǎ and introducing the canonical

complex structure J ǎ
b̌,

13 we rewrite eq. (4.5) using eq. (4.32),

δS
∣

∣

∣

boundary
= −i

∫

dτd2θ
(

Vb̌J
b̌
ǎ − Wǎ

)

δX ǎ. (4.36)

Eq. (4.22) suggested the presence of a non-degenerate magnetic field Fǎb̌ which implies

Neumann boundary conditions of the form,

D′X ǎ = F ǎ
b DXb, (4.37)

where indices without checks or hats run from 1 through d = 2n. Using the fact that the

bulk constraints eq. (3.16) can be rewritten as,

D̂X ǎ = J ǎ
b̌ D′X b̌, (4.38)

13Its nonvanishing components are J µ̌
ν̌ = +i δµ̌

ν̌ and J
¯̌µ
¯̌ν = −i δ

¯̌µ
¯̌ν
.
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we propose Neumann boundary conditions of the form,

D̂X ǎ = K ǎ
b DXb, (4.39)

with K ǎ
b = J ǎ

čF
č
b. Combining D̂2 = −(i/2)∂τ with eq. (4.39) we get that eq. (4.39) must

be of the form,

D̂X ǎ = K ǎ
b̌DX b̌, (4.40)

and K ǎ
b̌ is a complex structure (i.e. it squares to −1 and its Nijenhuis tensor vanishes)

which depends only on X ǎ. This explains in a natural way the emergence of an extra

complex structure when dealing with coisotropic branes [19, 27, 17]: imposing constraints

linear in the fermionic derivatives does give rise to complex structures.

When analyzing the boundary term in the variation of the N = 2 action, eq. (4.36),

one has to take into account that X̂ is constrained by eq. (4.40). As a consequence we have

that,

δX ǎ =
∂X ǎ

∂X̃ b̌

(

D̂δΛb̌ − K̃ b̌
čDδΛč

)

, (4.41)

where X̃ are coordinates in which the complex structure K is constant (which we denote

by K̃) and we expressed X̃ in terms of unconstrained fermionic superfields Λ: X̃ ǎ =

D̂ Λǎ − K̃ ǎ
b̌ DΛb̌. Using this in eq. (4.36), we find that it becomes,

δS
∣

∣

∣

boundary
= −i

∫

dτd2θ δΛěDX b̌ ∂X ǎ

∂X̃ ě

(

2MčK
č
[b̌,ǎ] + Mǎ,čK

č
b̌ − Mč,b̌K

č
ǎ

)

−i

∫

dτd2θ δΛě ∂X ǎ

∂X̃ ě

(

M
ǎ,b̂

D̂X b̂ − M
č,b̂

K č
ǎDX b̂

)

, (4.42)

where,

Mǎ ≡ Vb̌J
b̌
ǎ − Wǎ, (4.43)

and where we denoted the coordinates X µ̂ and X
¯̂µ collectively by X â. Using eq. (4.30)

and the fact that Rµ̂
¯̂ν does not depend on X̌, one shows that the second line in eq. (4.42)

vanishes provided,

Vµ̂¯̌ν = Vµ̌¯̂ν = 0, (4.44)

i.e. the Kähler potential factorizes (modulo a Kähler transformation) as V = V̂ (X̂,
¯̂
X) +

V̌ (X̌, ¯̌X). We rewrite the argument of the first line in eq. (4.42) as,

2MčK
č
[b̌,ǎ] + Mǎ,čK

č
b̌ − Mč,b̌K

č
ǎ =

2Fǎb̌ + ∂ǎ

(

Vč(JK)čb̌ − WčK
č
b̌

)

− ∂b̌

(

Vč(JK)čǎ − WčK
č
ǎ

)

, (4.45)

where,

Fǎb̌ ≡ −ωǎč K č
b̌ = −gǎč

(

JK
)č

b̌, (4.46)
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with ω the Kähler form (ωab ≡ gacJ
c
b). From this we read that the boundary term in the

variation, eq. (4.42), does vanish provided that Fab is a closed 2-form. Locally we get that

Fǎb̌ = ∂ǎAb̌ − ∂b̌Aǎ, (4.47)

with,

Aǎ = −1

2
Vč(JK)čǎ +

1

2
WčK

č
ǎ + ∂ǎf, (4.48)

with f an arbitrary real function. Given F , eqs. (4.47) and (4.48) constrain the potential

W . From the fact that Fǎb̌ is antisymmetric in its indices we immediately find that both

Fǎb̌ and ωǎb̌ are (2, 0) + (0, 2) forms with respect to the complex structure K implying —

as ω is non-degenerate — that k = 2l, l ∈ N. As a consequence the dimension of the

submanifold spanned by X ǎ is a multiple of four [19, 27, 17]. So here we are dealing with

open strings in the presence of a coisotropic D(n+2l)-brane. An obvious realization of the

previous is given by the case in which the submanifold parametrized by the coordinates

X ǎ is hyper-Kähler.

The reason for calling these D-branes coisotropic is that they wrap coisotropic sub-

manifolds. Denoting the submanifold wrapped by the D-brane by N ⊂ M, each tangent

space of N is a subspace of the tangent space of M, TN ⊂ TM. For N to be coisotropic, we

need T⊥
N ⊂ TN , where T⊥

N is the symplectic complement of TN .14 The complement T⊥
N is

generated by those tangent vectors along the brane which are in the image of π−. We will

denote them by δσâ. These are symplectic orthogonal to themselves because of the relation

eq. (4.30) and the symmetry of R. On the other hand they are symplectic orthogonal to all

vectors in Im π+, because the factorization of the metric implies ωµ̂¯̌ν = ωµ̌¯̂ν = 0. No other

vectors of Imπ− can be orthogonal to the σâ, because ω is non- degenerate. This shows

that indeed T⊥
N = {δσâ} ⊂ TN = {δσâ, δX ǎ}. Whenever k = 0, we find that T⊥

N = TN ,

so that, as mentioned before, N becomes lagrangian. In the other extreme, when k = n,

we find a maximally coisotropic D(4l)-brane wrapping the entire target space M. This is

obviously only possible for target space dimensions which are a multiple of four. In general,

the magnetic flux F , the pullback of ω and the additional complex structure K = −ω−1F

are only nonzero on the 4l-dimensional quotient space TN /T⊥
N = {δX ǎ}, where they are

all non-degenerate.

Upon using eq. (4.35) we can rewrite the non-standard boundary term in the N = 1

action, eq. (4.4), as,

Sextra = i

∫

dτdθ
(

Vǎ + Wb̌J
b̌
ǎ

)

D′X ǎ. (4.49)

Using the boundary condition eq. (4.40) and eq. (4.48) this indeed reduces to the standard

boundary term eq. (2.9).

We will finish this section with an example for n = 2 (or d = 4). We have two twisted

chiral fields which we denote by z and w. The Kähler potential is of the form V (z−z̄, w+w̄).

14Again, see appendix B for definitions.
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Imposing Dirichlet boundary conditions,

Re z = constant, Im w = constant, (4.50)

and Neumann boundary conditions,

D′ Im z = D′ Rew = 0, (4.51)

we find that the action,

S =

∫

d2σd2θD′D̂′ V (z − z̄, w + w̄) , (4.52)

describes open strings propagating on a Kähler manifold in the presence of a D2-brane

wrapped around a lagrangian submanifold.

From the previous discussion we know that there exists the possibility of a (maximally)

coisotropic brane — in the present case a D4-brane — as well. This can certainly be

(locally) realized if the Kähler potential V (z − z̄, w + w̄) is actually hyper-Kähler, which is

indeed so if the potential satisfies the Monge-Ampère equation,

Vzz̄ Vww̄ − Vzw̄ Vwz̄ = 1. (4.53)

The Legendre transform method [28] allows us to construct V in terms of a complex

prepotential h(x + z − z̄) with x ∈ R. The Kähler potential is then given by the following

Legendre transform,

V (z − z̄, w + w̄) = h(x + z − z̄) + h̄(x + z̄ − z) − x (w + w̄). (4.54)

Flat space corresponds e.g. to,

h = −1

4
(x + z − z̄)2 . (4.55)

The metric can be expressed in terms of the prepotential,

gzz̄ = Vzz̄ = −4
h′′h̄′′

h′′ + h̄′′
,

gzw̄ = Vzw̄ =
h′′ − h̄′′

h′′ + h̄′′
,

gwz̄ = Vwz̄ =
h̄′′ − h′′

h′′ + h̄′′
,

gww̄ = Vww̄ = − 1

h′′ + h̄′′
, (4.56)

where h′′ ≡ ∂2
xh(x + z − z̄) and similarly for h̄′′. The complex structure K is given by,

Kz
z̄ = gwz̄, Kz

w̄ = gww̄, Kw
z̄ = −gzz̄, Kw

w̄ = −gzw̄, (4.57)

which, upon using eq. (4.46) and (4.56), gives the magnetic background,

Fzw = +i, Fz̄w̄ = −i. (4.58)
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Using coordinates in which K is constant,

r ≡ z + z̄, s ≡ Vw, t ≡ i(w̄ − w), u ≡ iVz, (4.59)

one easily determines W such that the boundary term in the variation of the action eq. (4.5)

vanishes,

W =
i

2
(z Vz + w Vw − z̄ Vz̄ − w̄ Vw̄) . (4.60)

So the action eq. (4.1) with V given by eq. (4.54) and W by eq. (4.60) together with the

Neumann boundary conditions,

D̂z = Vwz̄ Dz̄ + Vww̄ Dw̄ , D̂w = −Vzz̄ Dz̄ − Vzw̄ Dw̄ , (4.61)

describes open strings in the presence of a maximally coisotropic D4-brane. Taking flat

space eq. (4.55), one recovers e.g. the example studied in [22].

5. Type B branes

We start from the most general N = 2 invariant action,

S = −
∫

d2σd2θD′D̂′ V (X, X̄) + i

∫

dτd2θ W (X, X̄), (5.1)

where V and W are real scalar functions of the chiral superfields X and X̄ which were

defined in eq. (3.14). Working out the D′ and D̂′ derivatives we get,

S = −2i

∫

d2σd2θ Vαβ̄

(

DXαDX β̄ − D′XαD′X β̄
)

+ i

∫

dτd2θ W (X, X̄). (5.2)

Note that even in the presence of boundaries, the action remains invariant under Kähler

transformations,

V (X, X̄) → V ′(X, X̄) = V (X, X̄) + f(X) + f̄(X̄). (5.3)

In addition we have the following invariance as well,

W (X, X̄) → W ′(X, X̄) = W (X, X̄) + g(X) + ḡ(X̄). (5.4)

Performing the integral over θ̂ and comparing the result to the N = 1 action in eq. (2.7),

we find that the target space is a Kähler manifold with Kähler potential V (X, X̄) — i.e.

the non-vanishing components of the metric are gαβ̄ = Vαβ̄ — which carries a U(1) bundle

where the non-vanishing components of the magnetic field Fab ≡ bab are determined by the

potential W (X, X̄),

Fαβ̄ = −Fβ̄α = −iWαβ̄ , Fαβ = Fāβ̄ = 0. (5.5)

The last equation states that we are dealing with a holomorphic vector bundle.
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When varying the action eqs. (5.1) or (5.2), one needs to take the constraints eqs. (3.14)

or (3.15) into account. e.g. working in N = (2, 2) superspace, we express15 X in terms of

an unconstrained superfield L: Xα = D̄+D̄−Lα = 2 D̄
′
D̄ Lα. In N = 2 superspace one has

unconstrained N = 2 fields Λα, Λᾱ and Mα, M ᾱ, in terms of which we get,

Xα =
(

D̂ − iD
)

Λα, Xᾱ =
(

D̂ + iD
)

Λᾱ,

D′Xα =
(

D̂ − iD
)

Mα − ∂σΛα, D′Xᾱ =
(

D̂ + iD
)

M ᾱ + ∂σΛᾱ. (5.6)

Using this we get the boundary term in the variation of the action eq. (5.1) or (5.2),

δS
∣

∣

∣

boundary
= −2i

∫

dτd2θ

(

δΛα
(

Vαβ̄D′X β̄ + iWαβ̄DX β̄
)

+δΛᾱ
(

VᾱβD′Xβ − iWᾱβDXβ
)

)

. (5.7)

Once again we need suitable boundary conditions to cancel this. We impose Dirichlet

boundary conditions on the unconstrained N = 2 superfields Λ,

δΛα = Rα
β δΛβ + Rα

β̄ δΛβ̄ . (5.8)

As (D̂ − iD)Λᾱ should not appear in δXα, we necessarily need that,

Rα
β̄ = Rᾱ

β = 0. (5.9)

We find that δXα = Rα
β δXβ follows from δΛα = Rα

β δΛβ provided,

Rα
δ,ǭ Pδ

+β P ǭ
+γ̄ = 0, (5.10)

is satisfied. Finally, requiring that DXα = P+
α

β DXβ and ∂τXα = Pα
+β ∂τXβ are mutually

compatible gives the condition,

Rα
δ,ǫ P+

δ
[β P+

ǫ
γ] = 0. (5.11)

Eqs. (5.10) and (5.11) guarantee the existence of coordinates Xα̂, α̂ ∈ {k + 1, · · ·m} where

k is the rank of P+, such that the Dirichlet boundary conditions are given by,

Xα̂ = constant. (5.12)

Denoting the remainder of the coordinates by Xα̃, α̃ ∈ {1, · · · , k}, we find that eq. (5.7)

vanishes provided we impose the Neumann boundary conditions,

Vα̃β̄ D′X β̄ = −iW
α̃

¯̃
β

DX
¯̃
β , (5.13)

where β̄ runs from 1 through m.

In this situation the σ-model describes open strings in a background with a D2k-brane

wrapped on a holomorphic submanifold. In addition, the D-brane can carry non-trivial

magnetic flux as long as this corresponds to the curvature of a connection on a holomorphic

line bundle. Note that, in contrast to the A brane case, the conditions on the U(1) flux

are independent of the geometry of the brane.

15Once more, for conventions we refer to the appendix.
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6. Duality transformations

6.1 Generalities

Supersymmetric non-linear σ-models allow for various duality transformations interchang-

ing the different types of superfields [2, 29, 30, 9, 31, 32]. Here we are chiefly interested in

duality transformations interchanging chiral and twisted chiral fields and vice-versa. Let us

first briefly review the case without boundaries. The basic idea is to start with a potential

with an isometry. Subsequently one gauges the isometry and imposes — using Lagrange

multipliers — that the gauge fields are pure gauge. Integrating over the Lagrange multipli-

ers gives back the original model while integrating over the gauge fields (or their potentials

which are unconstrained superfields) yields the dual model.

We start from the N = (2, 2) action (without boundaries),

S =

∫

d2σ d4θ

(

−
∫

dy W (y, · · · ) + (z + z̄) y

)

, (6.1)

where y is an unconstrained N = (2, 2) superfield, z is either a chiral or a twisted chiral

superfield and · · · stand for other, spectator fields. The equations of motion for y give,

z + z̄ = W (y, · · · ), (6.2)

which upon inversion gives,

y = U(z + z̄, · · · ). (6.3)

Using this to eliminate y yields the second order action,

S =

∫

d2σ d4θ

∫

d(z + z̄)U(z + z̄, · · · ). (6.4)

When however taking z and z̄ to be chiral and integrating over them in eq. (6.1) we get,

D̄+D̄−y = D+D−y = 0, (6.5)

which is solved by putting y = w + w̄ with w a twisted chiral superfield. If on the other

hand we started off with a field z which was twisted chiral we get upon integrating over z

and z̄,

D̄+D−y = D+D̄−y = 0, (6.6)

which is now solved by putting y = w+ w̄, with w a chiral superfield. The resulting second

order action (which is the action one starts with) is in both cases given by,

S = −
∫

d2σ d4θ

∫

d(w + w̄)W (w + w̄, · · · ). (6.7)

So we conclude that this duality transformation — associated with a U(1) isometry —

allows one to exchange chiral for twisted chiral fields and vice-versa. The natural question

which arises here is whether this duality symmetry persists when boundaries are present.

The main difficulty will be to introduce the right boundary terms such that the boundary

conditions of the various fields remain consistent with the duality transformation.
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6.2 From B to A branes

We start our investigation with B-branes which are fairly well under control. The initial

model has n chiral fields zα, α ∈ {1, · · · , n} and it is characterized by a Kähler potential

V (z+ z̄) and a U(1) prepotential W (z+ z̄). As the notation already indicates the potentials

are such that ∂αV = ∂ᾱV and ∂αW = ∂ᾱW hold, implying the existence of n isometries

which should allow us to dualize the model to an A-brane. The action is given by eq. (5.1)

and we choose the boundary conditions as fully Neumann,

Vᾱβ(z + z̄)D′zβ = +iWᾱβ(z + z̄)Dzβ ,

Vαβ̄(z + z̄)D′zβ̄ = −iWαβ̄(z + z̄)Dzβ̄ . (6.8)

We introduce a set of unconstrained real superfields yα = (yα)† (the gauge fields which in

a second order formulation of the model will be identified with zα + zᾱ) which satisfy the

boundary conditions,

Vαβ(y)D′yβ = +Wαβ(y) D̂yβ,

Vαβ(y)D̂′yβ = −Wαβ(y)Dyβ, (6.9)

where we used the isometries of V and W . The first order action is given by,

S = −
∫

d2σd2θ
(

D′D̂′ V (y) − 2i wα D−D̄+ yα − 2i wᾱ D+D̄− yα
)

+ i

∫

dτd2θ

(

W (y) − yα ∂W (y)

∂yα

∣

∣

∣

y=y(w+w̄)
− i yα

(

wα − wᾱ

)

)

=

∫

d2σd2θD′D̂′
(

− V (y) + yα
(

wα + wᾱ

)

)

+ i

∫

dτd2θ

(

W (y) − yα ∂W (y)

∂yα

∣

∣

∣

y=y(w+w̄)

)

, (6.10)

where the two forms of the action are related through partial integration and use of the

constraints. When writing y = y(w + w̄), we mean that the yα’s are given as a function of

the wα + wᾱ’s such that,

∂V (y)

∂yα
= wα + wā, (6.11)

holds. In the first expression for the action, wα and wᾱ are unconstrained N = 2 superfields

while in the second form for the action they are N = (2, 2) twisted chiral superfields.

Varying wα and wᾱ in the first form of the action gives the bulk equation of motion,

D−D̄+ yα
∣

∣

∣

θ′=θ̂′=0
= D+D̄− yα

∣

∣

∣

θ′=θ̂′=0
= 0. (6.12)

These constraints are themselves twisted chiral fields implying (by acting with D and D̂

on them) that eq. (6.12) is equivalent to the full N = (2, 2) superspace constraints,

D−D̄+ yα = D+D̄− yα = 0, (6.13)
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which are solved by putting,

yα = zα + zᾱ, (6.14)

with zα chiral superfields. The variation yields a boundary term as well which vanishes if

we impose the Dirichlet boundary conditions on the Lagrange multipliers,

−i
(

wα − wᾱ

)

− ∂W (y)

∂yα

∣

∣

∣

y=y(w+w̄)
= constant. (6.15)

Going to the second order action and using eq. (6.9) we recover the original model describing

open strings on a Kähler manifold with Kähler potential V (z+z̄) in the presence of a space-

filling B-brane on which one has a holomorphic U(1) bundle determined by the prepotential

W (z+z̄). The boundary conditions eq. (6.8) follow from combining eq. (6.9) with eq. (6.14).

We now turn to the dual model which one obtains by integrating the first order action

(in the second form of eq. (6.10)) over the gauge fields yα. Doing so, one finds eq. (6.11)

as the bulk equations of motion. It implicitly gives the yα’s as a function of the twisted

chiral superfields wα + wᾱ. Passing from the first order action eq. (6.10) to the second

order action, we get the action for the dual model,

S =

∫

d2σd2θD′D̂′V̂ (X, X̄) + i

∫

dτd2θ Ŵ (X, X̄). (6.16)

The resulting model is once more Kähler with the Kähler potential given by,

V̂ (w + w̄) = −V (y(w + w̄)) + (wα + wᾱ) yα(w + w̄). (6.17)

The Kähler metric of the dual model is the inverse of the Kähler metric of the original

model,

∂2V̂

∂wα∂wβ̄

=

(

∂2V

∂yα∂yβ

)−1∣
∣

∣

∣

y=y(w+w̄)

. (6.18)

The boundary potential is given by,

Ŵ (w + w̄) = W (y(w + w̄)) − yα ∂W (y)

∂yα

∣

∣

∣

y=y(w+w̄)

= W (y(w + w̄)) − ∂V̂

∂wα

(

∂2V̂

∂wα∂wβ̄

)−1 ∂W

∂wβ̄

. (6.19)

The model has Dirichlet boundary conditions given by eq. (6.15) which can be rewritten

as,

−i
(

wα − wᾱ

)

−
(

∂2V̂

∂wα∂wβ̄

)−1 ∂W (y(w + w̄))

∂wβ̄

= constant, (6.20)

and a set of Neumann boundary conditions which either follow from eq. (6.15) using the

constraints eq. (3.17) or which can be obtained by acting with D′ and D̂ on eq. (6.11) and

using eq. (6.9). One verifies that the boundary term in the variation of the action (see

eq. (4.5)) indeed vanishes.
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6.3 From A to B branes

6.3.1 Dualizing lagrangian branes

We start from the D1-brane discussed in section 4, assuming the existence of an isometry.

The σ-model is parametrized by a single twisted chiral field w (and its complex conjugate

w̄) with Kähler potential V (w+w̄) and boundary potential W (w+w̄). So we have Vw = Vw̄

and Ww = Ww̄. The action is given in eq. (4.1) and the Dirichlet boundary condition is

(Vw + iWw) δw = (Vw̄ − iWw̄) δw̄. (6.21)

The Neuman boundary condition which follows from this is,

(Vw + iWw)D′w + (Vw̄ − iWw̄)D′w̄ = 0. (6.22)

We introduce a real gauge (unconstrained) superfield y satisfying the boundary condition,

D
′y = −i

Wy(y)

Vy(y)
Dy, D̄

′y = +i
Wy(y)

Vy(y)
D̄y. (6.23)

The first order action is given by,

S =

∫

d2σ d2θ D′D̂′
{

V (y) − i u D̄D̄
′y − i ū DD

′y
}

+

i

∫

dτ d2θ

{

W (y) + D̄
′u

(

D̄
′y − i

Wy(y)

Vy(y)
D̄y

)

− D
′ū

(

D
′y + i

Wy(y)

Vy(y)
Dy

)

}

,(6.24)

where the Lagrange multipliers u and ū = u† are unconstrained complex N = (2, 2)

superfields. Integrating over the Lagrange multipliers yields a bulk term,

D̄D̄
′ y = DD

′y = 0, (6.25)

which is solved in terms of a twisted chiral superfield w,

y = w + w̄. (6.26)

From the last term in eq. (6.24) we get a boundary condition as well which is equal to

the one in eq. (6.23). Combining the boundary condition with eq. (6.26) and the bulk

constraints,

Dw = +D
′w, D̄w = −D̄

′w,

Dw̄ = −D
′w̄, D̄w̄ = +D̄

′w̄, (6.27)

which are equivalent to eq. (3.16), gives the original boundary conditions eqs. (6.21)

and (6.22). Going to the second order action one recovers the original model.

We introduce a potential Q(y) implicitely defined by,

W (y) = Q(y) − V ′(y)Q′(y)

V ′′(y)
, (6.28)
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where primes denote derivatives with respect to y. Using this and partial integration,16 we

can rewrite eq. (6.24) as,

S =

∫

d2σ d2θ D′D̂′
{

V (y) − y (z + z̄)
}

+i

∫

dτ d2θ

{

Q(y) − V ′(y)Q′(y)

V ′′(y)
+

Q′(y)

V ′′(y)

(

z + z̄
)

}

, (6.29)

where we introduced the chiral superfield z,

z ≡ i D̄D̄
′ u, z̄ ≡ i DD

′ ū, (6.30)

which by construction satisfy the constraints,

D̄z = D̄
′z = Dz̄ = D

′z̄ = 0. (6.31)

Integrating over the unconstrained superfield y gives the bulk equation of motion,

z + z̄ =
∂ V (y)

∂ y
, (6.32)

which upon inversion gives y as a function of z + z̄: y = y(z + z̄). The boundary term

arising from varying y,

δS
∣

∣

∣

boundary
= −i

∫

dτ d2θ δy

(

Q′(y)

V ′′(y)

)′
(

V ′(y) − (z + z̄)
)

, (6.33)

vanishes by virtue of eq. (6.32). Using eqs. (6.32) and (6.31), we get from eq. (6.23) the

Neumann boundary conditions,

D
′z = −i

W ′
(

y(z + z̄)
)

V ′
(

y(z + z̄)
) Dz,

D̄
′z̄ = +i

W ′
(

y(z + z̄)
)

V ′
(

y(z + z̄)
) D̄z̄. (6.34)

We now go to the second order action. In order to make this as explicit as possible,

we introduce a potential P (y) defined by

V (y) = −
∫

dy P (y). (6.35)

With this eq. (6.32) can be rewritten as,

z + z̄ = P (y), (6.36)

or,

y = P−1(z + z̄). (6.37)

16The calculations are facilitated by using
R

d2σ d2θ D′D̂′ = −(1/4)
R

d2σ DD̄D
′
D̄

′ and
R

dτ d2θ =

−(i/2)
R

dτ DD̄. Once again we refer to appendix A for conventions.
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Using this, the second order action follows from eq. (6.29):

S = −
∫

d2σ d2θ D′D̂′

∫

d
(

z + z̄
)

P−1(z + z̄) + i

∫

dτ d2θ Q
(

P−1(z + z̄)
)

, (6.38)

from which we read the Kähler potential V̂ (z + z̄) and the U(1) potential Ŵ (z + z̄):

V̂ (z + z̄) =

∫

d(z + z̄)P−1(z + z̄), Ŵ (z + z̄) = Q
(

P−1(z + z̄)
)

. (6.39)

In terms of the dual variables we can rewrite the boundary conditions eq. (6.34) as,

D′z = +i
Ŵzz̄

V̂zz̄

Dz, D′z̄ = −i
Ŵzz̄

V̂zz̄

Dz̄, (6.40)

which are recognized as the standard Neumann boundary conditions in the presence of

magnetic background field.

Concluding we find that the dual theory describes open strings in the presence of a

space filling D2 B-brane on a Kähler manifold whose potential is given by V̂ =
∫

d(z +

z̄)P−1(z + z̄). In addition, a U(1) bundle with potential Ŵ = Q
(

P−1(z + z̄)
)

is present as

well.

6.3.2 Dualizing coisotropic branes

Now let us look at the case of coisotropic A branes. The example discussed at the end

of section 4 is characterized by a Kähler potential V (z − z̄, w + w̄) which satisfies the

Monge-Ampère equation eq. (4.53). The potential has an obvious isometry,

δz = −ε1, δw = −i ε2, (6.41)

with ε1, ε2 ∈ R and constant. However the boundary potential W given in eq. (4.60) can

be rewritten as,

W =
i

2

(

(

z + z̄
)

Vz(z − z̄, w + w̄) +
(

w − w̄
)

Vw(z − z̄, w + w̄)
)

, (6.42)

and does not exhibit the above mentioned isometry. Remarkably one finds — using the

fact that the Kähler potential satisfies the Monge-Ampère equation eq. (4.53) — that D̂ W

transforms in a total D derivative, making the boundary term in the action invariant as

well. Let us make this very explicit by making a change of coordinates:

z1 ≡ z + z̄ − i Vw, z̄1 ≡ z + z̄ + iVw,

z2 ≡ −i
(

w − w̄
)

+ Vz, z̄2 ≡ −i
(

w − w̄
)

− Vz. (6.43)

One verifies that both z1 and z2 are chiral boundary fields, i.e.,

D̂za = +iDza, D̂z̄a = −iDz̄a (6.44)

for a ∈ {1, 2}. The boundary potential W given in eq. (6.42) can be rewritten as,

W =
i

8

(

(

z1 + z̄1

)(

z2 − z̄2

)

−
(

z1 − z̄1

)(

z2 + z̄2

)

)

. (6.45)

– 24 –



J
H
E
P
1
1
(
2
0
0
7
)
0
6
1

The isometry eq. (6.41) becomes in these coordinates

δz1 = δz̄1 = −2 ε1, δz2 = δz̄2 = −2 ε2. (6.46)

Under these transformations, the potential transforms as

δW = − i

2

(

(

ε1z2 − ε2z1

)

−
(

ε1z̄2 − ε2z̄1

)

)

, (6.47)

which — by virtue of the constraints eq. (6.44) — gives δ
∫

dτd2θ W = 0. The present

situation is similar to the one studied in [33]. In order to gauge the isometries, one needs

first to modify the potential W such that it becomes invariant under the isometries. This

is achieved by modifying W to W ′,

W ′ = W +
i

2

(

q z1z2 − q z̄1z̄2 + ξ − ξ̄
)

, (6.48)

where q ∈ R and ξ is a new (auxiliary) boundary chiral field which transforms under the

isometry as,

δξ = (1 + 2q) ε1z2 − (1 − 2q) ε2z1. (6.49)

With this one gets that δW ′ = 0. Because the difference between W and W ′ is the sum

of a holomorphic and an anti-holomorphic function of the boundary chiral fields we have

that
∫

dτd2θ W ′ =
∫

dτd2θ W , so the physical content of the model remains unchanged.

However — as was shown in [33] — when trying to gauge more than one isometry si-

multanously one can encounter an obstruction (which was given a Lie algebra cohomology

interpretation in [34]) which renders gauging of the full isometry algebra impossible. In the

present situation this obstruction is indeed present — as one can check using the equations

developed in [33] — implying that we can only gauge a linear combination of the isometries

given in eqs. (6.46) and (6.49).

For concreteness, we will gauge the ε2 isometry. Our analysis is considerably simplified

if we rewrite the boundary term in the action as,

S
∣

∣

∣

boundary
= i

∫

dτd2θ W = i

∫

dτd2θ
i

4

(

z1 + z̄1

)(

z2 − z̄2

)

= i

∫

dτd2θ i
(

z + z̄
)

Vz. (6.50)

The gauging procedure is now simple. We introduce an unconstrained gauge field y satis-

fying the boundary conditions,

D
′y = +i DVz(z − z̄, y), D̄

′y = +i D̄Vz(z − z̄, y), (6.51)

D
′
(

z − z̄
)

= −i DVy(z − z̄, y), D̄
′
(

z − z̄
)

= −i D̄Vy(z − z̄, y). (6.52)

The first order action is given by,

S =

∫

d2σ d2θ D′D̂′
{

V (z − z̄, y) − i u D̄D̄
′y − i ū DD

′y
}

+i

∫

dτ d2θ
{

i
(

z + z̄
)

Vz(z − z̄, y) + D̄
′u

(

D̄
′y − i D̄Vz(z − z̄, y)

)

−D
′ū

(

D
′y − i DVz(z − z̄, y)

)}

, (6.53)
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where u and ū ≡ u† are unconstrained complex N = (2, 2) superfields. Integrating over u

and ū gives the equation of motion,

DD
′y = D̄D̄

′y = 0, (6.54)

which is solved by putting,

y = w + w̄, (6.55)

with w a twisted chiral superfield. Varying y yields a boundary term as well which vanishes

if we impose eq. (6.51). So the action eq. (6.53) together with the boundary condition

eq. (6.52) reproduces upon integrating over u and ū the original theory.

Partially integrating, we rewrite eq. (6.53) as,

S =

∫

d2σ d2θ D′D̂′
{

V (z − z̄, y) − y
(

r + r̄
)

}

+i

∫

dτ d2θ
{

i
(

z + z̄
)

−
(

r − r̄
)

}

Vz(z − z̄, y), (6.56)

where we introduced the chiral field r (and r̄),

r ≡ i D̄D̄
′u, r̄ ≡ i DD

′ū. (6.57)

Integrating over y yields the equation of motion,

Vy(z − z̄, y) = r + r̄. (6.58)

In terms of the prepotential h introduced in eq. (4.54), we can write a second order expres-

sion for the integrand of the bulkterm in eq. (6.56) as,
(

V (z − z̄, y) − y
(

r + r̄
)

)∣

∣

∣

y=y(z−z̄,r+r̄)
= h(z − z̄ − r − r̄) + h̄(z̄ − z − r − r̄) . (6.59)

Furthermore, requiring that the boundary term in the variation of y vanishes gives the

Dirichlet boundary condition,

Im r − Re z = 0. (6.60)

Combining eqs. (6.52) and (6.58) yields a Dirichlet,

Im r − Re z = constant, (6.61)

and a Neumann,

−i
(

D′z − D′z̄
)

= −D
(

r + r̄
)

, (6.62)

boundary condition. Note that eqs. (6.60) and (6.61) are mutually compatible if we choose

the constant in eq. (6.61) to be zero. Finally, the combination of eq. (6.51) and (6.58)

yields two more Neumann boundary conditions,

−i
(

D′r − D′r̄
)

+ D′z + D′z̄ = 0,

D′r + D′r̄ = −iD
(

z − z̄
)

. (6.63)
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So this implies that the open strings are propagating in a background which contains a

D3-brane whose location is fixed by eq. (6.60). The bulk geometry is bi-hermitean and

parametrized by a chiral, r, and a twisted chiral field, z, with the generalized Kähler

potential given by h(z − z̄ − r − r̄) + h̄(z̄ − z − r − r̄). The non-vanishing components of

the metric and the Kalb-Ramond form can be obtained from eq. (3.9) and are given by,

grr̄ = gzz̄ = +h′′(z − z̄ − r − r̄) + h̄′′(z̄ − z − r − r̄),

brz̄ = gzr̄ = −h′′(z − z̄ − r − r̄) + h̄′′(z̄ − z − r − r̄). (6.64)

Models whose bulk geometry is generalized Kähler will be studied in detail in [23]. Nonethe-

less, the previous example clearly shows that coisotropic branes do appear as duals to other

brane configurations.

7. Conclusions and discussion

In this paper we presented a completely local N = 2 superspace formulation of two-

dimensional nonlinear σ-models for target spaces parameterized exclusively by chiral or

twisted chiral fields (meaning that the bulk geometry is Kähler). This was possible be-

cause, contrary to previous attempts, only the supersymmetries which are preserved by

the boundary conditions were required to remain manifest at all times. Starting from this

formalism, a general N = 2 superspace description of both A and B branes on Kähler

manifolds was given. Interchanging type A boundary conditions for type B and vice versa

turns out to be equivalent to exchanging chiral for twisted chiral superfields and vice versa

allowing us without loss of generality to limit ourselves to type B boundary conditions.

In this setting A-branes (B-branes) are described solely in terms of twisted-chiral (chiral)

superfields.

The N = 2 superspace description of type A branes turned out to be subtle. It gives

rise to a “non-standard” boundary coupling which was shown to reduce to the standard

one when proper use is made of the nontrivial boundary conditions. An open question – for

the case of A-branes — is to find a better characterization or geometric interpretation of

the boundary potential W . Perhaps a reformulation of the problem in terms of generalized

complex geometry might shed some light.

The duality transformations relating A and B models were investigated as well. The

main difficulty here is the identification of the right boundary terms in the first order

action which see to it that boundary conditions correctly carry over during the duality

transformation. When isometries are present, it is reasonably straightforward to dualize

lagrangian A-branes to space filling B-branes and vice-versa. Dualizing a coisotropic A-

brane turns out to be subtle. The example of a space-filling D4 coisotropic brane was

shown to have two isometries. However only a linear combination of those two can be

gauged. As a consequence we can dualize the model to a D3-brane where the bulk is now

not Kähler anymore, but exhibits a bihermitean geometry.

It is clear that in general not sufficient isometries will be present to convert an A

brane on a Kähler manifold to a B-brane on a Kähler manifold or vice-versa. When only
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part of the chiral or twisted chiral superfields can be dualized, the dual model will exhibit

a bihermitian — or equivalently, a generalized Kähler — geometry. The study of these

duality transformations will be reported on in [23].

Finally, N = 2 superspace provides a powerful framework for investigating the quantum

properties of these non-linear σ-models (as was demonstrated in e.g. [35]). Requiring the β-

functions to vanish gives rise to further conditions on the background geometry. E.g. at one

loop one gets that the holomorphic bundle for a type B brane needs to satisfy a deformed

stability condition as well. In this context it would be most interesting to calculate the

one loop β-function for a coisotropic brane and make contact with the stability conditions

obtained in [36].
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A. Conventions, notations and identities

We denote the worldsheet coordinates by τ ∈ R and σ ∈ R, σ ≥ 0. Sometimes we use

worldsheet light-cone coordinates,

σ=| = τ + σ, σ= = τ − σ. (A.1)

The N = (1, 1) (real) fermionic coordinates are denoted by θ+ and θ− and the correspond-

ing derivatives satisfy,

D2
+ = − i

2
∂=| , D2

− = − i

2
∂= , {D+,D−} = 0. (A.2)

Passing from N = (1, 1) to N = (2, 2) superspace requires the introduction of two more

real fermionic coordinates θ̂+ and θ̂− where the corresponding fermionic derivatives satisfy,

D̂2
+ = − i

2
∂=| , D̂2

− = − i

2
∂= , (A.3)

and again all other — except for (A.2) — (anti-)commutators do vanish. Quite often a

complex basis is used,

D± ≡ D̂± + iD±, D̄± ≡ D̂± − iD±, (A.4)

which satisfy,

{D+, D̄+} = −2i ∂=| , {D−, D̄−} = −2i ∂=, (A.5)
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and all other anti-commutators do vanish.

When dealing with boundaries in N = (2, 2) superspace, we introduce various deriva-

tives as linear combinations of the previous ones. We summarize their definitions together

with the non-vanishing anti-commutation relations. We have,

D ≡ D+ + D−, D̂ ≡ D̂+ + D̂−,

D′ ≡ D+ − D−, D̂′ ≡ D̂+ − D̂−, (A.6)

with,

D2 = D̂2 = D′2 = D̂′2 = − i

2
∂τ ,

{D,D′} = {D̂, D̂′} = −i∂σ . (A.7)

In addition we also use,

D ≡ D+ + D− = D̂ + iD, D
′ ≡ D+ − D− = D̂′ + iD′,

D̄ ≡ D̄+ + D̄− = D̂ − iD, D̄
′ ≡ D̄+ − D̄− = D̂′ − iD′. (A.8)

They satisfy,

{D, D̄} = {D′, D̄′} = −2i ∂τ ,

{D, D̄′} = {D′, D̄} = −2i ∂σ . (A.9)

B. Submanifolds of symplectic manifolds

A symplectic manifold M is a manifold endowed with a non-degenerate closed two-form

ω. There are several natural ways to define specific submanifolds of these. We will do this

by first defining the symplectic complement of a subspace of a symplectic vector space.

So let V be a symplectic vector space of dimension d = 2n. This means that it is

equipped with a non-degenerate, skew-symmetric, bilinear form ω, called the symplectic

form. The symplectic complement of a subspace W is defined as,

W⊥ = {v ∈ V |ω(v,w) = 0,∀w ∈ W}. (B.1)

This satisfies (W⊥)⊥ = W and dimW + dimW⊥ = dimV . However, contrary to the

orthogonal complement (defined with a metric), generically W ∩ W⊥ 6= ∅.
We are interested in the three following cases,

Isotropic: When W ⊆ W⊥, W is called isotropic. This is true if and only if ω restricts

to zero on W . Every one-dimensional subspace is isotropic.

Coisotropic: When W⊥ ⊆ W , W is called coisotropic. In other words, W is coisotropic

if and only if W⊥ is isotropic. Equivalently, W is coisotropic if and only if ω descends

to a non-degenerate form on the quotient space W/W⊥. A codimension one subspace

is always coisotropic.
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Lagrangian: When W = W⊥, W is called Lagrangian, so that a Lagrangian subspace

is both isotropic and coisotropic.

These definitions immediately imply that, because of the non-degeneracy of ω, a Lagrangian

subspace is n-dimensional, where n = d/2. The number of dimensions of an isotropic (a

coisotropic) subspace in necessarily smaller (bigger) than n.

Given a symplectic manifold M, a submanifold N is called isotropic, coisotropic or

Lagrangian if the tangent space TN is an isotropic, coisotropic or Lagrangian subspace of

TM, that is, if TN ⊆ T⊥
N , T⊥

N ⊆ TN or TN = T⊥
N , respectively.
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